Interações Entre Aves e Outros Organismos na Planície de Inundação do Alto Rio Paraná, Brasil.

MENDONCA, Luciana Baza¹; GIMENES, Márcio Rodrigo¹; ANJOS, Luiz dos²

¹Universidade Estadual de Maringá, Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Av. Colombo 5790, Maringá, CEP 87020-900, Paraná, Brasil; Tel: (44) 2614630. E-mail: lu_baza@yahoo.com.br; ²Universidade Estadual de Londrina, Depto Biologia Animal e Vegetal, CX 6001, Londrina, CEP 86051-970, Paraná, Brasil, Tel: (43) 3421390. E-mail: llanjos@sercomtel.com.br

RESUMO

São apresentados dados preliminares dos estudos atualmente desenvolvidos na planície de inundação do alto rio Paraná, enfocando interações ecológicas entre (1) beija-flores polinizadores e Palicourea crocea (Rubiaceae) e (2) Ciconiiformes e peixes.

Palavras-chave: interações aves-plantas, polinização por beija-flores, Ciconiiformes, pressão de predação, sul do Brasil, rio Paraná.

INTRODUÇÃO

As pesquisas ornitológicas inseridas no PELD tiveram como objetivos iniciais avaliar a distribuição da comunidade de aves nos diferentes ambientes encontrados em ilhas do alto rio Paraná e o estudo ecomorfológico de Falconiformes. Em uma Segunda etapa, foram abordados grupos específicos de aves como beija-flores, aves de rapina e Ciconiiformes. O conhecimento das interações entre as aves e outros organismos é importante para o entendimento do funcionamento geral das comunidades e para fins de manejo e conservação, aspectos atualmente analisados.

No presente texto são apresentados resultados obtidos nos estudos de interações entre (1) beijaflores e *Palicourea crocea* (Rubiaceae) e (2) Ciconiiformes e peixes.

RESULTADOS E DISCUSSÃO

Interações entre beija-flores (Trochilidae) e *Palicourea crocea* (Rubiaceae)

A interação entre plantas e polinizadores promove a polinização das flores e o fornecimento de recursos para os animais que atuam como vetores de pólen, constituindo-se, portanto, numa relação mutualística. Dentre os animais que visitam as flores em busca de alimento, os beijaflores estão provavelmente entre os mais conhecidos. Conforme Stiles (1981), constituem-se nas aves nectarívoras mais especializadas e formam o grupo ecologicamente e numericamente dominante nas interações aves-plantas na região Neotropical. Primariamente dependentes de néctar como fonte de energia, os beija-flores polinizam diversas angiospermas brasileiras (e.g. Sazima et al., 1996; Buzato et al., 2000; Vasconcelos & Lombardi, 2001). Parecem ser polinizadores freqüentes das rubiáceas, havendo registros para espécies de Manettia, Ferdinandusa, Psychotria e Palicourea, entre outras (Passos & Sazima, 1995; Murcia & Feinsinger, 1996; Contreras & Ornelas, 1999; Castro & Oliveira, 2001).

No alto rio Paraná, *Palicourea crocea* é um dos principais componentes do sub-bosque da vegetação ripária e exibe atributos florais que sugerem a polinização por beija-flores; suas flores vistosas são visitadas pelos colibris (Souza & Souza 1998). Uma vez que o estudo encontra-se

em pleno desenvolvimento, os dados aqui apresentados baseiam-se em observações preliminares, sendo portanto parciais e passíveis de sofrer alterações.

P. crocea é um arbusto frequente na área de estudo (ilha Porto Rico: 22° 45'S e 53° 15'W) e ocorre principalmente na borda da mata, formando densos agrupamentos (em alguns casos com mais de 100 indivíduos). As flores heterostílicas têm antese diurna, são tubulares, sem odor perceptível e de coloração que varia do amarelo ao avermelhado. O néctar, acumulado na base da corola gibosa apresenta-se disponível no momento da abertura das flores. As características florais da espécie, relacionadas a síndrome da ornitofilia (Faegri & Pijl, 1979; Proctor et al., 1996), são muito similares às de outras Rubiaceae polinizadas por beija-flores, como Ferdinandusa speciosa (Castro & Oliveira, 2001) e Manettia luteo-rubra (Passos & Sazima, 1995).

O período principal de floração da espécie coincide com a época de chuvas, entre outubro e dezembro, com pico em novembro, quando espécimes maiores chegam a apresentar mais de 100 flores abertas por dia (x = 41,25 ± 44, 70, n = 8). Adicionalmente, alguns indivíduos podem ser encontrados floridos ao longo do ano. Todavia, neste caso o número de flores por indivíduo é bastante baixo. A espécie poderia ser classificada como "moderada agrupada", conforme Feinsinger & Colwell (1978). A produção diária de muitas flores por indivíduo, juntamente com a ocorrência em densos agrupamentos, apresentadas por *P. crocea*, promovem a concentração de recursos em uma área relativamente pequena, disponibilizando grandes quantidades de néctar para os beija-flores. Cada flor produz diariamente cerca de 16,4 μl de néctar com aproximadamente 25,86% de açúcar dissolvido (n = 15). Tais valores convertidos em mg de açúcar (seguindo Bolten *et al.*, 1979) indicam uma produção diária de cerca de 4,71 mg de açúcar/flor ou 18,84 cal/flor/dia (ver Dafni, 1992). Considerando que a demanda energética diária de um beija-flor normalmente varia entre 6 e 10 kcal (McMillen & Carpenter, 1977; Carpenter, 1983), um denso agrupamento de *P. crocea* poderia sustentar vários indivíduos.

Três espécies de beija-flores (Trochilidae) foram observadas até o momento (n = 61) visitando e polinizando as flores de *P. crocea*: *Hylocharis chrysura* (60,65%), *Anthracothorax nigricollis* (31,15%) e *Chlorostilbon aureoventris* (8,20%), sendo o primeiro o mais freqüente e o último esporádico. Embora as 3 espécies tiveram comportamento semelhante na exploração das flores, isto é, pairando diante delas e introduzindo o bico no tubo da corola, o número de flores inspecionadas e o tempo gasto em cada visita variou consideravelmente. A frequência de visitas realizadas pelos Trochilidae à *P. crocea*, juntamente com as características do néctar e a baixa disponibilidade de outras espécies ornitófilas na ilha, qualificam esta planta como um importante recurso para beija-flores de bico curto na planície de inundação do alto rio Paraná.

Interações entre Ciconiiformes e peixes

A ordem Ciconiiformes compreende as famílias Ardeidae (garças e socós), Ciconiidae (jaburu, cabeça-seca e cegonha) e Threskiornithidae (colhereiro, guará, curicaca e afins). As três famílias apresentam vasta distribuição mundial e caracterizam-se pela maior parte de seus representantes terem estreita ligação aos ambientes aquáticos, sobretudo à água doce (Sick, 1997). A maior parte dos Ciconiiformes (principalmente das famílias Ardeidae e Ciconiidae) tem como principal item alimentar pequenos vertebrados, em especial peixes, sendo a eles muitas vezes atribuída uma ação impactante sobre a ictiofauna (Kushlan, 1976; Kirby *et al*, 1996; Sick, 1997). De acordo com suas características adaptativas, cada espécie de Ciconiiformes está mais apta a obter seu alimento em determinado tipo de ambiente aquático e em diferentes setores do espectro espacial neste ambiente (na vegetação das margens, praias, interior do sedimento ou na coluna d'água)(Martínez, 1993).

Este trabalho tem como objetivos a avaliação e o monitoramento das populações das diferentes espécies de Ciconiiformes nos diferentes ambientes aquáticos (rios, canais, lagoas abertas e lagoas fechadas) da planície de inundação do alto rio Paraná. As lagoas abertas apresentam a

maior biomassa de peixes (dados não publicados/PELD 2000), além de serem ocupadas principalmente por espécies de pequeno porte e formas jovens das espécies de grande porte que utilizam-se deste ambiente para o seu desenvolvimento inicial (Agostinho *et al.*, 1997). Atribuindo-se ao fator alimento a condição de principal fonte de estruturação das comunidades de aves (Karr, 1990), partiu-se da hipótese de que as lagoas abertas comportariam maior número de espécies de Ciconiiformes, além de maiores densidades destas. Consequentemente, haveria uma maior pressão de predação por parte dessas aves sobre a ictiofauna neste tipo de ambiente. O estudo será desenvolvido em dois anos, sendo que em cada ano haverá quatro campanhas de amostragens, uma em cada estação do ano. Considerando-se que o início foi em fevereiro de 2002 e até aqui foram realizados apenas três do total de oito campanhas, os resultados apresentados correspondem a uma visão inicial da comunidade de Ciconiiformes da planície de inundação do alto rio Paraná.

Foram registradas até o momento 11 espécies de Ciconiiformes m área estudada (*Ardea cocoi*, *Egretta alba*, *Egretta thula*, *Butorides striatus*, *Nycticorax nycticorax*, *Tigrisoma lineatum*, *Mycteria americana*, *Ciconia maguari*, *Jabiru mycteria*, *Mesembrinibis cayennensis* e *Platalea ajaja*). Houve um total de 679 registros, considerando-se as três campanhas, sendo 118 indivíduos no verão, 218 no outono e 273 no inverno. A densidade média no verão foi 1,958 indivíduos/hectare, contra 2,097 no outono e 2,8 no inverno. A maior média de indivíduos foi registrada nas lagoas abertas (131,3), seguida pelos canais (57,6), lagoas fechadas (21) e rios (16,33). O ambiente com maior densidade média foi as lagoas abertas (4,038), seguido pelas lagoas fechadas (2,584), canais (1,681) e rios (0,837) (Tabela 1).

Tabela 1. Número de indivíduos e densidade (número de indivíduos/hectare) de Ciconiiformes registrados até o momento na área de estudo.

Campanhas	Rios	Canais	Lagoas Abertas	Lagoas Fechadas
Verão 2002	11 (0,564)	70 (2,041)	86 (2,644)	21 (2,584)
Outono 2002	18 (0,923)	43 (1,254)	142 (4,366)	15 (1,846)
Inverno 2002	20 (1,025)	60 (1,749)	166 (5,104)	27 (3,323)

Embora os resultados sejam ainda muito precoces para uma análise das flutuações sazonais das populações de Ciconiiformes, nota-se claro aumento da densidade populacional no inverno, exceção feita apenas nos canais. Este período do ano apresentou os mais baixos níveis hidrométricos na planície desde o início das amostragens. O mesmo padrão tem sido constatado nos Llanos, Venezuela, por González (1996), onde o período de seca demonstra ser o mais favorável ao aumento populacional de Ciconiiformes. Na comparação entre os ambientes, os dados iniciais indicam a confirmação da hipótese de maior densidade populacional nas lagoas abertas. Porém, análises mais concretas dos padrões sazonais e espaciais de flutuação das populações de Ciconiiformes só serão possíveis com o decorrer das amostragens de campo.

AGRADECIMENTOS

Agradecemos à prof. Dra. M. Conceição de Souza pela sugestão de *P. crocea* para o estudo e ao prof. Dr. K. –L, Schuchmann pela ajuda com os dados e metodologia. Agradecemos também aos amigos da Base Avançada de Pesquisa do Nupélia (Porto Rico) pelo auxílio em campo, ao CNPq e CAPES pelo apoio técnico e a todos que de alguma forma contribuíram e estão contribuindo para o de senvolvimento do estudo.

REFERÊNCIAS

AGOSTINHO, A. A.; JÚLIO JR., H. F.; GOMES, L. C.; BINI, L. M; AGOSTINHO, C. S. Composição, abundância e distribuição espaço-temporal da ictiofauna. In: VAZZOLER, A. E. A. M.; AGOSTINHO, A. A.; HAHN, N. S. (Ed.). A planície de inundação do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. Maringá: EDUEM: Nupélia, 1997. cap. 2, p. 179-208.

BOLTEN, A. B.; FEINSINGER, P.; BAKER, H.G.; BAKER, I. On the calculation of sugar concentration in flower nectar. **Oecologia** v. 41, p. 301-304. 1979.

BUZATO, S.; SAZIMA, M.; SAZIMA, I. Hummingbird-pollinated floras in three Atlantic Forest sites. **Biotropica** v.32, n.4b, p. 824-841. 2000.

CARPENTER, F. L. Pollination energetics in avian communities: simple concepts and complex realities. *In*: Jones, C. E.; Little, R. J. **Handbook of experimental pollination biology.** Ed. Van Nostrand Reinhold Company, New York, c. 1983. p. 215-234.

CASTRO, C. C.; OLIVEIRA, P. E. A. M. Reproductive biology of the protandrous *Ferdinandusa speciosa* Pohl (Rubiaceae) in southeastern Brazil. **Revta Brasil. Bot.** v. 24, n.2, p.167-172. 2001.

CONTRERAS, P. S.; ORNELAS, J. F. Reproductive biology of *Palicourea padifolia* (Rubiaceae) a distylous shrub of a tropical cloud forest in Mexico. **Plant. Syst. Evol.** v.219, p. 25-241. 1999.

DAFNI, A. Pollination ecology: a practical approach. Oxford: Oxford University Press. 1992.

FAEGRI, K.; PIJL, L. VAN DER. **The principles of pollination ecology**. Oxford: Pergamon Press. 1979. 243 p.

FEINSINGER, P.; COLWELL, R. K. Community organization among neotropical nectar-feeding birds. **Am. Zool.** v.18, n. 779-795. 1978.

GONZÁLEZ, J. A. Densidad y dinamica espacio-temporal de las poblaciones de cigueñas (Ciconiidae) en los Llanos inundables de Venezuela. **Orn. Neotrop.**, v. 7, p. 177-183, 1996.

KARR, J. R. Interactions between forest birds and their habitats: a comparative synthesis. In: KEAST, A. (Ed.). **Biogeography and ecology of forest bird communities.** The Hague: SPB Academic, c1990. cap. 26, p. 379-386.

KIRBY, J. S.; CALLAGHAN, D. A.; HUGUES, B.; UNDERHILL, M. C. Piscivorous birds in Britain and Ireland: na overview of current knowledge of conflicts with fisheries. In: HOLMES, J. S.; CLEMENT, P. (Ed.). Fish – eating birds. Peterborough: Copyright Joint Nature Committee, 1996. No. 15, p. 1 – 6.

KUSHLAN, J. A. Wading bird predation in a seasonally fluctuating pond. Auk, v. 93, p. 464 – 476, 1976.

MARTÍNEZ, M. M. Las aves y la limnología. In: BOLTOVSKOY, A.; LÓPEZ, H. L. (Ed.). **Conferencias de Limnología.** La Plata: Instituto de Limnología, 1993. P. 126 – 142.

MCMILLEN, R. E.; CARPENTER, F. L. Daily energy costs and body weight in nectarivorous birds. **Comp. Biochem. Physiol**. v. 56A, p. 439-441. 1977.

MURCIA, C.; FEINSINGER, P. Interespecific polen loss by hummingbirds visiting flower mixtures: effects of floral architecture. **Ecology** v.77, n. 2, p. 550-560. 1996.

PASSOS, L.; SAZIMA, M. Reproductive biology of the distylous *Manettia luteo-rubra* (Rubiaceae). **Bot. Acta** v.108, p. 309-313. 1995.

PROCTOR, M.; YEO, P.; LACK, A. The natural history of pollination. Ed. Harper Collins, 1996.

SAZIMA, M.; BUZATO, S.; SAZIMA, I. An assemblage of hummingbird-pollinated flowers in a montane florest in southeastern Brazil. **Bot. Acta.** v.109, p. 149-160. 1996.

SICK, H. Ornitologia brasileira. Rio de Janeiro: Nova Fronteira, 1997. 485p.

SOUZA, D. C.; SOUZA, M. C. Levantamento florístico das tribos Psychotrieae, Coussareeae e Morindeae (Rubiaceae) na região de Porto Rico, alto rio Paraná. **Acta Scientiarum** v. 20, n. 2, p. 207-212. 1998.

STILES, F. G. Geographical aspects of bird-flower coevolution, with particular reference to Central America. **Ann. Missouri Bot. Gard.** v. 68, p. 323-351, 1981.

VASCONCELOS, M. F.; LOMBARDI, J. A. Hummingbirds and their flowers in the campos rupestres of southern Espinhaço Range, Brazil. **Melopsittacus** v. 4, n.1, p. 3-30. 2001.