2.4 - Zoobentos

Introdução

Estudos realizados desde 1986 em planície aluvial do alto rio Paraná mostram que essa planície apresenta alta biodiversidade, sendo de extrema importância para manutenção de populações de espécies aquáticas e paludícolas, podendo atribuir também, a alta diversidade de grupos taxonômicos de zoobentos à complexidade ambiental associada a substratos diversificados da planície aluvial do alto rio Paraná (TAKEDA, LANSAC-TÔHA & AGOSTINHO, 2002).

Um dos objetivos centrais da proposta do PELD é o entendimento das estruturas e processos físicos, biológicos e sociais vigentes no remanescente de várzea do rio Paraná e dos efeitos das atividades antrópicas (regulação de vazão e retenção de nutrientes pelos reservatórios, agropecuária e mineração) sobre sua integridade. No caso de zoobentos, nessa etapa tornou-se imprescindível o experimento em mesocosmos para ampliação dos conhecimentos especialmente de moluscos invasores, fornecendo futuramente subsídios para o manejo ecológico.

Um dos experimentos de mesocosmos para avaliar a comunidade de invertebrados foi instalação de substratos artificiais de madeira e outro de gaiolas para manutenção de peixes (predadores) e de bivalvia invasora. Na dinâmica de colonização de invertebrados nos substratos artificiais, muitos fatores têm sido considerados importantes, como a velocidade de fluxo, distúrbios do ambiente, migração vertical e aérea por oviposição dos adultos alados, organismos à deriva presentes na coluna de água, acúmulo de recursos alimentares como perifíton e detritos orgânicos que favorecem os raspadores, coletores e alguns filtradores que se alimentam de matéria orgânica particulada.

Materiais e métodos

As amostras de zoobentos foram coletadas trimestralmente em doze estações compreendendo rios, ressacos, canais e lagoas, com diferentes graus de conexão, localizados na planície inundação do alto rio Paraná, durante o período de março a dezembro de 2004. Em cada estação foram amostradas em transecto de uma margem a outra, incluindo a região central. Em cada ponto dessas estações foram realizadas quatro amostragens, três para análise biológica e uma para análise sedimentológica e estimativa de teor de matéria orgânica, com o pegador de fundo tipo Petersen modificado (0,0345 m²). O material coletado foi acondicionado em galões e lavados com o auxílio de um sistema de peneiras com malhas 2,0; 1,0 e 0,2 mm. O material retido na peneira 0,2 mm foi fixado com álcool 70% e, posteriormente, triado sob microscópio estereoscópico. A composição granulométrica foi determinada utilizando-se a escala de Wentworth (1922). A estimativa do conteúdo de matéria orgânica do sedimento foi obtida pela queima da 10g de sedimento seco em mufla a 560°C, por cerca de quatro horas.

Experimentos

Colonização de invertebrados em três principais rios (Paraná, Ivinhema e Baía) da planície.

As amostras para o estudo das comunidades de insetos aquáticos do substrato artificial estão sendo coletadas mensalmente de janeiro de 2004 a março de 2005 nos rios, Paraná, Baia e Ivinheima. Em cada estação foram colocados três jogos de substratos artificiais (margens direita, esquerda e centro). Um jogo de substrato artificial foi composto por uma bóia, localizada na superfície da água, e duas placas de madeira em forma de X (Anexo B, item 2.4, Fig. 1). A primeira placa de madeira foi instalada a 1,5 m da superfície da água e a segunda, a 3,0 m. Três réplicas de amostras estão sendo raspadas em cada substrato artificial e as amostras, fixadas imediatamente em álcool 70%. O experimento foi confeccionado e está sendo mantido (perda de substratos, bóias, etc) com a Adicional de Bancada da Bolsa de Produtividade nº 304692/2002-6 . As despesas de gasolina (motor a popa) e alimentação das coletas mensais estão sendo apoiadas pela taxa bancada da doutoranda Sandra Maria de Melo e apoio logístico do Nupelia.

Figura 1 – Bóia onde estão pendurados dois substratos artificiais de madeira em X.

O experimento de crescimento de *C. fluminea* está sendo realizado em uma gaiola, 80 x 80 de largura com 170 cm de altura, de tela expandida de alumínio de malha em forma de losângulo com dois diagonais (7 mm e 3,8 mm). A gaiola é suspensa por um flutuador confeccionado cm tubo de PVC (Anexo B, item 2.4, Fig. 2).

Nove gaiolas utilizadas no projeto PRONEX – e findo o experimento, foi deslocado para o rio Baía e está sendo utilizado no projeto PELD onde foram colocados em três gaiolas, 30 indivíduos de *Corbicula* coletados no ressaco do rio Paraná e mais 30 indivíduos coletados no canal Corutuba, em três gaiolas, a fim de verificar os crescimentos. O experimento com outras três gaiolas está sendo realizado pela Dra Evanilde Benedito Cecílio.

O experimento iniciou-se em maio de 2004 e está prevista a manutenção desse experimento até abril de 2005, quando os dados serão divulgados. A manutenção e as despesas desse experimento estão sendo mantidas com a Adicional de Bancada da Bolsa de Produtividade nº 304692/2002-6 e apoio logístico do Nupelia.

Figura 2 - Gaiolas medir o crescimento de Corbicula fluminea no rio Baía.

Colonização de invertebrados em diferentes substratos artificiais.

O experimento está sendo realizado com quatro tipos de substratos artificiais: madeira e PVC em forma de X, alumínio e PVC em forma de tubo em três réplicas (A, B, C). Os substratos foram dispostos em uma plataforma flutuante, cada um com réplica de três, e colocados a aproximadamente 1,5 m de profundidade (Anexo B, item 2.4, Fig. 3). As amostras estão sendo coletadas com espátula e pincel, utilizando-se um quadrado. Os invertebrados estão sendo fixados em álcool 70% e triado sob microscópio estereoscópico no laboratório de Zoobentos. O experimento foi confeccionado e está sendo mantido com a Adicional de Bancada da Bolsa de Produtividade nº 304692/2002-6 e apoio logístico do Nupelia.

Figura 3 - Plataforma flutuante, onde estão suspensos os experimentos no rio Paraná.

Resultados e discussão

Na coleta de zoobentos em 2004 foi registrada a maior densidade total no sistema Paraná, seguida por Ivinheima. *Corbicula fluminea* e *Limnoperna fortunei* (mexilhão dourado) são Bivalvia invasoras, porém, a densidade de *L. fortunei* foi maior, especialmente no sistema Paraná. No sistema Baía, todos os ambientes são quase lênticos, predominou as larvas de Chironomidae (Fig. 4) o qual engloba muitos gêneros adaptados a esse tipo de ambiente.

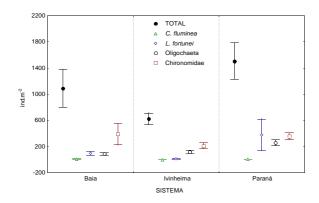


Figura 4 – Densidade (ind./ m-2) média nos sistemas.

As maiores densidades médias totais foram registradas nos canais secundários e nos rios, sendo que no primeiro foi de Chironomidae e nos rios foi causado por *L. fortunei*, especialmente do rio Paraná (Fig. 5).

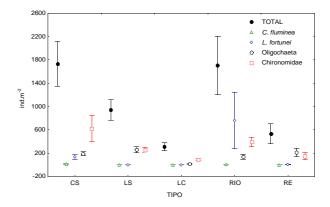


Figura 5 – Densidade média (ind./m-2) em diferentes tipos de ambiente da planície aluvial. CS= canal secundário; LS= lagoa sem comunicação; LC= lagoa com comunicação; RIO= rio; RE= ressaco.

A maior densidade média total foi observada no mês de setembro especialmente pela alta densidade de *L. fortunei* e de larvas de Chironomidae (Fig. 6). Provavelmente, o período de primavera corresponde ao período de reprodução de mexilhão dourado na planície aluvial do alto rio Paraná, devido à alta densidade de espécies jovens no fundo.

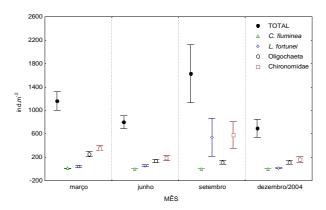


Figura 6 – Densidade média (ind. m-2) em diferentes meses.

Mais estudos com contínuo monitoramento no campo, experimentos de mesocosmos e microcosmos para o entendimento do comportamento dessas espécies invasoras em ambientes tão distintos do país de origem e, principalmente, para avaliar a sua influência em relação aos outros invertebrados nativos, ainda pouco conhecidos, que vivem no mesmo hábitat.

Experimentos

Colonização de invertebrados em três principais rios (Paraná, Ivinhema e Baía) da planície.

Na planície de inundação do alto rio Paraná ainda não se tem pesquisas de invertebrados aquáticos em substratos artificiais suspensos na coluna de água. A maioria dos estudos é restrita às comunidades bênticas (Takeda *et al.* 1991, Takeda e Gzybkowska 1997, Takeda 1999, Montanholi-Martins e Takeda 2001) e fauna associada as macrófitas aquáticas (Souza-Franco e Takeda 2000, Melo *et al.* 2002, 2004, Takeda *et al.* 2003).

Na dinâmica de colonização de invertebrados nos substratos artificiais, muitos fatores têm sido considerados importantes, como a velocidade de fluxo, distúrbios do ambiente (Modde e Drewes 1990), pela complexa relação dos fatores bióticos e abióticos (Ellsworth 2000), migração vertical e aérea por oviposição dos adultos (Williams e Hynes 1976), sedimentação (Mason *et al.* 1973), organismos à deriva presentes na coluna de água (Mackay 1992), acúmulo de recursos alimentares, como perifíton e detritos orgânicos, que favorecem os raspadores, coletores e alguns filtradores que se alimentam de matéria orgânica particulada (Gore 1982, Robinson *et al.* 1990, Mackay 1992). Pelas pesquisas realizadas ao longo do tempo na planície aluvial do alto rio Paraná, *Limnoperna fortunei* foi observada em maior abundância, sempre em canais com correnteza, motivo pelo qual levou a instalação dos substratos artificiais em três principais canais que são denominados de rio, o rio Paraná, rio Ivinheima e rio Baía, onde as diferenças na velocidade da correnteza da água são nítidas.

A colonização de *Limnoperna fortunei* nos substratos artificiais de madeira no rio Paraná foi a mais alta, corroborando os dados obtidos com os estudos de zoobentos, com a máxima densidade sendo registrados em setembro e outubro (primavera) (Fig. 7).

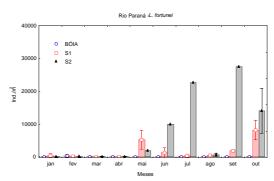


Figura 7 - Densidade de Limnoperna fortunei nos substratos artificiais do rio Paraná.

No rio Ivinhema, a densidade de mexilhão dourado não foi tão alta como a do rio Paraná, porém, houve registro desse molusco em quase todos os meses de coleta (Fig. 8).

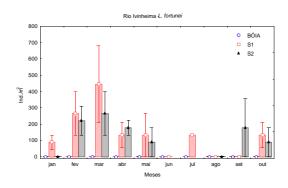


Figura 8 - Densidade de Limnoperna fortunei nos substratos artificiais do rio Ivinheima.

No rio Baía, o registro de *Limnoperna fortunei* no substrato artificial foi mais tardio, porém, apesar de os ambientes, de maneira geral, serem lênticos, houve um aumento contínuo na densidade dessa espécie (Fig.8).

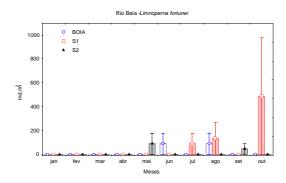


Figura 9 - Densidade de Limnoperna fortunei nos substratos artificiais do rio Baía.

Limnoperna fortunei, através de análise de zoobentos e de substratos artificiais, mostrou uma reprodução quase que contínua na planície aluvial do alto rio Paraná, onde a temperatura é extremamente favorável, porém ainda tem outro grande fator a ser analisada em 2005, que é a grande cheia que está acontecendo nesse mês de relatório (fevereiro). A influência das cheias sobre as espécies nativas de zoobentos da planície aluvial do rio Paraná é razoavelmente conhecida, porém, pouco se sabe sobre o efeito dessa cheia sobre a população de espécies invasoras, como Corbicula e Limnoperna, em ambientes tão propícios como os da planície. Os estudos de longa duração têm sido uma grande oportunidade para analisar com detalhes a influencia de diversos fatores ambientais sobre a comunidade de invertebrados bênticos.

Colonização de invertebrados em diferentes substratos artificiais.

As larvas de Chironomidae, entre os invertebrados aquáticos, destaca-se devido a sua alta densidade e diversidade associadas a diversos tipos de substratos, além do grande número de hábitos alimentares e estratégias adaptativas (Fend e Carter, 1995; Cranston, 1995). Segundo Takeda *et al.* (2004), é um dos grupos mais abundantes na comunidade aquática.

A correlação entre os parâmetros químicos da água (oxigênio dissolvido, temperatura, pH e condutividade elétrica) e densidade (ind.m $^{-2}$) foi feita através do teste de Spearman ($\alpha = 0.05$).

Para escolha dos testes adequados para análise dos dados de densidade e riqueza (número de táxons) nos diferentes substratos, foram aplicados os pressupostos de normalidade (Shapiro-Wilks; $\alpha=0.05$) e homocedasticidade (Levene, $\alpha=0.05$). A análise de variância não paramétrica (Anova, $\alpha=0.05$), através do teste de Mann-Whitney, foi utilizada para avaliar diferenças entre os substratos. Entre os parâmetros químicos da água durante os dias de amostragem foi utilizado o teste de Kruskal-Wallis (Anova, $\alpha=0.05$).

A afinidade das morfoespécies de Chironomidae ao tipo de substrato foi determinada por meio de agrupamento, utilizando-se a métrica City-block (Manhatan) e método de ligação UPGMA.

Todas as análises foram realizadas utilizando-se o programa STATISTICA versão 5.0 (1997).

Os valores dos parâmetros químicos da água, oxigênio dissolvido, temperatura, pH e condutividade elétrica variaram entre os dias de amostragem (H=71,0; p=0). O teste de Spearman não revelou correlação significativa entre os parâmetros químicos da água e a densidade de Chironomidae nos quatro tipos de substratos artificiais (p > 0,05).

Tabela 1 – Valores dos parâmetros químicos da água, oxigênio dissolvido (O.D.) temperatura (T°C), pH e condutividade elétrica (Cond.), obtidos durante experimento de colonização em substratos artificiais, no período de agosto à outubro do 2004

ue 2004.				
Datas	O.D. (mg/l ⁻¹)	T°C	pН	Cond.(µS. cm ⁻¹)
06/ago (19 dias)	9.95	19.60	6.89	54.90
24/ago (37 dias)	8.82	19.60	6.64	64.70
10/set (54 dias)	4.96	23.42	7.07	127.00
24/set (68 dias)	7.94	22.70	7.07	59.50
07/out (81 dias)	8.82	24.30	6.53	59.40
22/out (96 dias)	8.61	23.40	6.40	56.40

No rio Paraná não foram observadas correlações significativas entre os gêneros de Chironomidae e as variáveis abióticas. Freitas (1998), em seu estudo com substratos artificiais, observou que as variações ambientais têm um menor efeito no processo de colonização do que outros fatores, como por exemplo, a abundância dos organismos nos hábitats vizinhos.

Na análise do processo de colonização ao longo de 96 dias de exposição, registrou-se a ocorrência de larvas a partir da 1ª coleta (19 dias de exposição), exceto no substrato de alumínio, onde a presença ocorreu somente a partir da 2ª coleta (37 dias de exposição) (Figura 10).

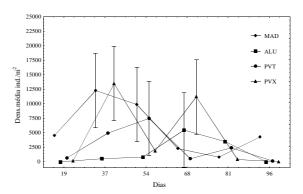


Figura 10 - Densidade (ind.m-2) das morfoespécies de Chironomidae, em quatro tipos de substratos artificiais: madeira X (MAD), alumínio tubo (ALU), PVC X (PVX) e PVC tubo (PVT), ao longo de 96 dias de exposição no rio Paraná, município de Porto Rico - PR, no período de agosto a outubro de 2004.

A densidade foi maior em 37 dias nos substratos de madeira e PVC em X e 54 e 68 dias para os substratos de PVC em tubo e alumínio, respectivamente. Verificou-se decréscimo acentuado na densidade a partir de 81 dias, com exceção do substrato de madeira.

Todas as morfoespécies foram coletadas até o 81° dia, exceto no substrato de madeira com a adição de *Thienemanniella* sp. 1 no 96° dia. (Figura 11).

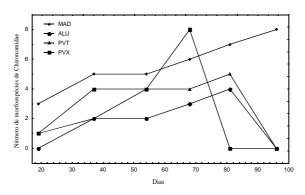


Figura 11 – Número acumulado de morfoespécies em quatro tipos de substratos artificiais: madeira X (MAD), alumínio tubo (ALU), PVC tubo (PVT) e PVC X (PVX), ao longo de 96 dias de exposição no rio Paraná, município de Porto Rico - PR, no período de agosto a outubro de 2004.

Foram coletadas 656 larvas de Chironomidae, pertencentes às subfamílias Chironominae e Ortocladinae, e identificadas 12 morfoespécies: *Cricotopus* sp. 1, *Cricotopus* sp. 2, *Thienemanniella* sp. 1, *Thienemanniella* sp. 3, *Rheotanytarsus* sp. 1, *Rheotanytarsus* sp. 3, Goeldchironomus holoprasinus, *Dicrotendipes* sp. 3, *Polypedilum (Polypedilum)* sp. 1, *Caladomyia* (gênero C), *Caladomyia* sp. 1. e *Caladomyia friederi*. Os maiores valores de riqueza foram registrados para os substratos de madeira e PVC em forma de X (S=8) e maior densidade média (5667 ind.m⁻²) para o substrato de madeira (Figura 2).

Cricotopus sp. 1 foi predominante em todos os substratos (11933 ind. m⁻²), com maior abundância no substrato de madeira (4244 ind. m⁻²), seguido por *Rheotanytarsus* sp. 1 (2022 ind. m⁻²), com maior valor de densidade no substrato de madeira (1133 ind. m²) (Figura 12).

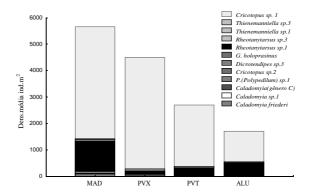


Figura 12 - Densidade média (ind.m-2) das morfoespécies de Chironomidae, em quatro tipos de substratos artificiais: madeira X (MAD), PVC X (PVX), PVC tubo (PVT) e alumínio tubo (ALU), ao longo de 96 dias de exposição no rio Paraná, município de Porto Rico - PR, no período de agosto a outubro de 2004.

O teste de Mann-Whitney revelou diferenças significativas em relação à densidade de Chironomidae entre os substratos de madeira e alumínio (U= 95.0, p=0.03) e quanto à riqueza entre os substratos de madeira e PVC em X (U= 98.5, p=0.04).

No presente estudo, o substrato de madeira diferenciou-se dos demais substratos. Em 81 dias de amostragem foi verificada a diminuição no número de táxons e indivíduos nos substratos PVC em X, PVC e alumínio em tubo, enquanto que no substrato de madeira observou-se aumento na densidade e acréscimo de novas morfoespécies, provavelmente por propiciar melhores condições para a colonização e desenvolvimento das larvas de Chironomidae.

A superfície do substrato de madeira possui maior irregularidade física. Isto estaria proporcionando maior número de habitats e acúmulo de matéria orgânica utilizada como alimento e abrigo. De acordo com Trivino-Strixino e Strixino (1998), os substratos de madeira possuem características peculiares que viabilizam o crescimento de algas perifíticas e sua lenta decomposição favorecem o crescimento das larvas de Chironomidae, por ingestão de fungos e detritos em associação com bactérias (Walker, 1986).

Dentre as morfoespécies identificadas *Cricotopus* sp. 1 foi predominante em todos os substratos artificiais. As larvas da subfamília Ortocladiinae geralmente são adaptadas a altas velocidades de correnteza e concentrações de oxigênio (Pinder, 1995). O gênero *Cricotopus* constitui-se o mais abundante em rios (Trivino-Strixino e Strixino, 1995). A maior colonização desse táxon nos substratos artificiais pode estar relacionada a sua grande capacidade de natação e habilidade para dispersar-se na coluna de água (Armitage *et al.* 1995; Harrison *et al.* 2001).

Mackay (1992) cita que a rapidez com que alguns invertebrados lóticos colonizam substratos deve-se parcialmente aos organismos que se encontram a deriva ou que possuem uma maior capacidade de natação. A maior habilidade dos "nadadores" proporciona vantagens sobre os invertebrados rastejantes ou de movimento limitado e, por isso, acabam sendo melhores colonizadores (Doeg *et al.* 1989).

A abundância de *Rheotanytarsus* pode ter ocorrido devido ao hábito alimentar das larvas. Apesar de as formas imaturas não serem restritas a um único sistema de alimentação (Osborne, 2000). As larvas de *Rheotanytarsus* geralmente são classificadas como filtradores (partículas suspensas na água) e filtradores - coletores (partículas finas < 1 mm) (Henriques-Oliveira, 2003; Mackay, 1992). Devido a essas características estes organismos acabam por possuir grande habilidade para explorar substratos praticamente desprovidos de perifíton (Mackay, 1992), como observado nos substratos artificiais amostrados.

O dendrograma, com base nos dados quantitativos (ind.m⁻²), formou dois grupos: o primeiro de maior similaridade com os substratos em forma de X e o segundo com os substratos em forma de tubo (Figura 13).

A análise de agrupamento revelou que a densidade de larvas estaria sendo influenciada pela forma do substrato. Estudos sobre os efeitos da complexidade física na colonização de invertebrados foram feitos por O'Connor (1991) e Hart (1978) e revelaram que quanto maior a complexidade estrutural do substrato maior a riqueza de espécies, em virtude do aumento da disponibilidade de recursos e hábitats.

Casey e Kendall (1996) observaram que a quantidade de matéria orgânica aderida seria o principal fator de influência na colonização de invertebrados por alterar a área de superfície e homogeneidade física. Osborne (2000), em análise experimental, verificou que a distribuição dos imaturos de *Chironomus riparius* é dependente das irregularidades físicas do ambiente e que a presença de alimento, apesar de atrativa, não é o principal fator para a agregação das larvas.

A heterogeneidade física e estrutural dos substratos artificiais amostrados possivelmente foi o fator que influenciou as diferenças na composição das larvas de Chironomidae.



Figura 13 – Dendrograma de agrupamento para quatro tipos de substratos artificiais: madeira X (MAD), PVC X (PVX), PVC tubo (PVT) e alumínio tubo (ALU), com base na densidade (ind.m-2) das morfoespécies de Chironomidae, ao longo de 96 dias de exposição no rio Paraná, município de Porto Rico - PR, no período de agosto a outubro de 2004.